Do Hyperpolarization-induced Proton Currents Contribute to the Pathogenesis of Hypokalemic Periodic Paralysis, a Voltage Sensor Channelopathy?
نویسندگان
چکیده
An increasing number of human diseases have been found to result from mutations in ion channels, including voltage-gated cation channels. Though the mutations are known, the pathophysiological mechanisms underlying many of these channelopathies remain unclear. In this issue of the Journal, Struyk and Cannon (see p. 11) provide evidence for a novel mechanism, proton movement catalyzed by the voltage-sensing domain of the mutant channels. It already is known that voltage-gated proton channels resemble the voltage sensor domains of cation channels and show depolarization-induced outward currents and current reversal at the H+ equilibrium potential. It also is well established that voltagegated K+ channels can conduct or transport protons when specifi c voltage sensor arginines are replaced by histidines—and that the pathway for the protons differs from the K+ conducting pore (Starace et al., 1997). In this issue, Struyk and Cannon show that a mutation in the voltage sensing domain of a voltage-gated Na+ channel can behave similarly and further raise the question of whether this additional membrane conductance for protons may be relevant for the pathogenesis of the disease (hypokalemic periodic paralysis).
منابع مشابه
Leaky channels make weak muscles.
Mutations in the skeletal muscle voltage-gated calcium channel (CaV1.1) have been associated with hypokalemic periodic paralysis, but how the pathogenesis of this disorder relates to the functional consequences of mutations was unclear. In this issue of the JCI, Wu and colleagues recapitulate the disease by generating a novel knock-in CaV1.1 mutant mouse and use this model to investigate the ce...
متن کاملGating Pore Currents in DIIS4 Mutations of NaV1.4 Associated with Periodic Paralysis: Saturation of Ion Flux and Implications for Disease Pathogenesis
S4 voltage-sensor mutations in CaV1.1 and NaV1.4 channels cause the human muscle disorder hypokalemic periodic paralysis (HypoPP). The mechanism whereby these mutations predispose affected sarcolemma to attacks of sustained depolarization and loss of excitability is poorly understood. Recently, three HypoPP mutations in the domain II S4 segment of NaV1.4 were shown to create accessory ionic per...
متن کاملAccidental intravenous bolus infusion of potassium chloride in a young man with hypokalemic periodic paralysis
Hypokalemic periodic paralysis is anautosomal dominantdisease characterized by muscle weakness or paralysis with a matching fall in blood potassium levels. Paralysis attacks often occur in adolescence and are induced by strenuous exercise followed by rest, high carbohydrateor high sodiummeal content, sudden changes in temperature, and even excitement, noise, flashing lights and cold temperature...
متن کاملDomain III S4 in closed-state fast inactivation: Insights from a periodic paralysis mutation
Heterologous expression of sodium channel mutations in hypokalemic periodic paralysis reveals 2 variants on channel dysfunction. Charge-reducing mutations of voltage sensing S4 arginine residues alter channel gating as typically studied with expression in mammalian cells. These mutations also produce leak currents through the voltage sensor module, as typically studied with expression in Xenopu...
متن کاملIon permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge-carrying arginine residues in skeletal muscle Na(V)1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only approximately 1% of central pore current, but substitution of guanidine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 130 شماره
صفحات -
تاریخ انتشار 2007